If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24=3x^2+34x
We move all terms to the left:
24-(3x^2+34x)=0
We get rid of parentheses
-3x^2-34x+24=0
a = -3; b = -34; c = +24;
Δ = b2-4ac
Δ = -342-4·(-3)·24
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-38}{2*-3}=\frac{-4}{-6} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+38}{2*-3}=\frac{72}{-6} =-12 $
| 6x+2x=32+2x | | -5x/6-6=-8+6 | | 6x=322x | | 4/5x-1/3x=15 | | 30=8v-3v | | 10=3v+2v | | 2x+5-6+21=2(3x-5)-4 | | 12-9x=8x-37 | | (8x+11)-(3x-6)=(5-3x)-(4x+6) | | 4+x=8x-24 | | 3.14r^2•10=785 | | 6(g+3)=-2(g=31) | | .7-2.4k=18.02 | | 3(x-2)=9x-45 | | 1/6m=11 | | -5x-13=72 | | q+34/6=9 | | n-5÷8=-4 | | 10-14-4z=8-2z-15 | | 57.5=3t+8.50 | | 0.7+2.4k=28.02 | | 57.5=8.5(3)+t | | -(2x-3)=0 | | 57.5=8.5t+3 | | 2p+-7=13+8p | | 8.5=57.5/3+t | | -1(2x-3)=0 | | 8x-7=x16 | | 1(9-2x)=3x+3 | | 7(2m-3)=35 | | 3x+10+x+40=90 | | x-14=10x-4 |